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Abstract: Background: The complexity of diseases has led to recent interest in polypharmacology, which suggests 
that many effective drugs specially modulate multiple targets. Drugs with multiple targets can provide a superior 
therapeutic effect and decrease in side effect profile compared to ligands with single target, especially in the treat-
ment of complex diseases, such as tumors, nervous system diseases and inflammatory diseases. The network-based 
polypharmacology holds the promise of expanding the opportunity for novel targets and drug identification. How-
ever, it faces considerable challenges to how multi-target drugs can be rationally designed from the network phar-
macology perspective, particularly for combinations of targets that are structurally divergent. Methods: In this re-
view, we focus on the pharmacological properties of current polypharmacology, discuss potential novel drug indi-
cation arising from drug repurposing, and introduce approaches to the rational design of multi-target drugs. Re-
sults: As a result, we highlighted the features of polypharmacology. Also, we have presented some computational methods to predict the 
potential novel multi-target drugs with lower toxicity and higher efficacy. Moreover, network analysis might play important role in reposi-
tioning drugs that modulate targets involved in different pathologies. Conclusion: This perspective aims to provide a global view on 
polypharmacology, which is the foundation of the next paradigm in drug discovery. 
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1. INTRODUCTION 

 Medical industries aims at identifying drug candidates with 
efficacious and well-tolerated, safe medicines to ensure them suc-
cessfully completing clinical trials, reaching the market [1]. Such 
drug candidates require a favorable pharmacological and physico-
chemical properties. In the past decades, targeting a single kinase 
has been proven successful in the treatment of oncogenesis, for 
example, drugs that inhibit BCR-ABL, as well as members of the 
epidermal growth factor receptors (EGFR) and rapidly accelerated 
fibrosarcoma (RAF) class of proteins [2-4]. However, despite con-
siderable progress in genome- and proteome-based high-throughput 
screening methods and rational drug design, the number of success-
ful drugs of novel single-target did not increase appreciably [5, 6]. 
This is due to that single-target drugs tend to exhibit low clinical 
efficacy typically the attrition rate as high as 90% at the late stage 
of clinical trials [7, 8]. Additionally, many diseases with unmet 
therapeutic needs are in essence complex and multifactorial, the 
underestimation of their complexity might be the reason behind 
their medical failures [9]. In fact, it has been appreciated that many 
effective drugs act on multiple targets rather than single target, the 
concept of polypharmacology [10, 11]. Polypharmacology currently 
encompasses both multiple drugs that act independently on differ-
ent targets, and a single drug binding to multiple targets within a 
biological network, as opposed to the concept of “one gene, one 
drug, one disease” [12, 13]. In recent years, the efficacy of multi-
target therapy is supported by observations concerning the robust-
ness and resilience of complex biological systems. For example, 
most approved kinase drugs potently inhibit multiple targets, and 
they are attractive therapeutic agents for numerous disorders rang-
ing from neurology to cancer [14-17]. 

*Address correspondence to these authors at the Department of Center of 
Bioinformatics, College of Life Science, Northwest A&F University, Yan-
gling, Shaanxi 712100, China; Tel/Fax: +86-029-87092262;  
E-mail: yh_wang@nwsuaf.edu.cn 
State Key Laboratory of New-tech for Chinese MedicinePharmaceutical 
Process, Lianyungang, Jiangsu, 222001, China;  
Tel/Fax: +86-0518-81152327; E-mail: kanionlunwen@163.com 

 More importantly, polypharmacology is referred to the specific 
binding of a drug to two or more molecular targets in networks, the 
robustness and redundancy of biological systems. In a biological 
network, polypharmacological drugs are involved in two different 
ways: a single drug acting on multiple targets of a unique disease 
pathway and a single drug acting on multiple targets associated to 
multiple disease pathways [18]. Thus, in principle, multi-target 
therapeutics can achieve greater efficacy and be less vulnerable to 
drug resistance by impacting multiple nodes at the system level 
[19]. Indeed, when faced with complex diseases, networks of drug-
target, target-disease networks may be able to resort the system 
robustness to ensure the effective treatment. As a conclusion, poly-
pharmacology focuses on searching for multi-target drugs to per-
turb multiple disease-associated networks rather than designing 
selective ligands to target individual proteins, which brings a holis-
tic view into new drug development.  

 The efficacy and toxicity of drugs, whether designed as single- 
or multi-target therapeutics, result from complex interactions be-
tween pharmacodynamics, pharmacokinetic, genetic, epigenetic, 
and environmental factors. Meanwhile, drug resistance is usually 
triggered by the appearance of one or more mutations in the genetic 
encoding for drug target proteins [20, 21]. With the help of poly-
pharmacological drugs, the probability of a cell developing resis-
tance simultaneously to multi-target drugs acting on unrelated pro-
teins is statistically lower than the probability of resistance develop-
ing against single-target drugs [22]. Moreover, drugs acted on mul-
tiple targets can decrease drug doses, so that less ef cacious and 
slightly more toxic compounds can be used safely. In addition, 
compounds with favorable polypharmacology that engage multiple 
targets and do not hit on off-targets can have excellent therapeutic 
efficacy with reduced toxicity and resistance [7, 14, 23, 24]. Conse-
quently, the identification of bioactive small molecules that specifi-
cally multi-target proteins with good therapeutic effect and less 
toxicity are at the heart of chemical biology research. As mentioned 
above, the use of polypharmacology may offer an excellent alterna-
tive to establish biological methodology or provide entirely differ-
ent opportunity to gain new insight for the novel drug development.  
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 In recent decades, much progress was made in establishing 
methods for the identification of the cellular targets of small mole-
cules. One of the main characteristics of target-based approaches is 
the focus on drug targets. However, it is not a generally applicable 
methodology that can successfully be applied in the majority of the 
cases, so screening the polypharmacological drugs with maximal 
efficacy and minimal toxicity is the rational discovery. To date, 
only approximately 2% of all the predicted proteins have been tar-
geted with drug molecules and the estimated fraction of potential 
“druggable” proteins is approximately 15% [25]. Recently in silico 
systematic prediction methods have been the popular strategies to 
increase the efficiency and safety of drugs. For example, Zoltan et 
al. proposed an approach related complex drug-protein interaction 
profiles on the basis of the relationship between 177 major effect 
categories and 1200 FDA-approved, finally, they predicted uncov-
ered effect profiles of drugs in a systematic manner [26]. Also, 
Campillos used phenotypic side-effect similarities to infer whether 
two drugs share a target, identifying 13 implied drug-target rela-
tions out of 20 predictions by in vitro binding assays [27].  

 Nevertheless, polypharmacology approaches could provide 
drug candidates with a superior efficacy profile, it is important to 
note that we are still facing several challenges. The problem is, how 
do we rationally approach targeting multiple protein targets? Which 
targets are most likely to be modulated by a single drug? Or, con-
versely, which drugs are most amenable to multi-targeted drug 
design? And how do we avoid the toxicity resulting from poly-
pharmacology? Rational design of multi-target compounds is still in 
its infancy, so it surely will need further novel methodological de-
velopment. In this review, we first discuss the pharmacological 
properties of polypharmacology, and then reviewed the computa-
tional methods for establishing pharmacological relationships be-
tween proteins, and how these values can be used to construct inter-
action networks that can guide the design of multi-targeted drugs. 
The framework of the review was shown in Fig. 1. 

2. MULTI-TARGET DRUGS AND COMBINATON THER-
APY 

 For many years, the paradigm of drug discovery was to develop 
highly selective ligands that interact with individual target proteins 
[7]. The genome projects has offered profound drug-development 
strategies by the wealth of potential targets. However, despite the 
considerable drug-development efforts undertaken, the number of 
successful drugs and novel targets did not increase appreciably 
during the past decade. Agents that act on one target only might not 
modulate complex systems in the desired ways even if they can 
change their targets immediately. Furthermore, single-target thera-
peutic agents could induce side effects and tissue toxicity, resulting 

in reduced efficacy, drug resistance, and a generally decreased qual-
ity of life for patients [22]. These considerations are independent 
for the drug discovery of whether or not the pharmacological agent 
inhibits or activates its targets. Therefore, the classical ‘one drug for 
one target for one disease’ perspective is an oversimplification chal-
lenged by a growing body of evidence showing that there are poly-
pharmacological drugs generally enjoyed by more clinical success 
than highly selective alternatives [7, 23, 28, 29]. The trends of drug 
development was shown in Figure 1, which illustrated the drug 
design process from the single-target to multi-target with the aid of 
computational screening and in vitro screening. In this part, we 
divide the polypharmacology into two different forms: single drugs 
of multiple targets and the combination therapy.  

 The first form of polypharmacology is combination therapy, 
which employs different drugs with different mechanisms of action 
to treat diseases [30]. The combinatorial drugs currently are em-
ployed for rational design, and their increased efficacy justifies in 
vitro discovery efforts for identifying novel multi-target mecha-
nisms [31]. The drug combination therapy represents the most sim-
ple and immediate way to regulate perturbation of the pathogenic 
cascade. This approach is a holistic paradigm, which has already 
been proven effective in combating complex diseases, including 
tumors, HIV infections and hypertension [9]. For example, prelimi-
nary clinical studies suggest that some of drug combinations in-
clude kinase, heat shock protein 90 (Hsp90), and farnesyltrans-
ferase inhibitors exhibit promising clinical efficacy in cancer clini-
cal trials [32]. That is because that molecules targeting multiple 
independent targets on different mutation sites may achieve the 
synthesis therapeutic effect by preventing drug resistance and re-
ducing side effects. In addition, by aiming for a weak perturbation 
of the biological network, lower doses of each compound can be 
used, resulting in better therapeutic selectivity in many important 
areas [33]. However, combining several drugs in a single pill is not 
always an easy task. Further difficulties arise when specific combi-
nations are used for clinical development [34]. Another drawback 
of the combination therapy is the drug-drug interaction. Drug inter-
actions can occur at all levels in the body and can be attributed to 
multiple mechanisms, thus resulting in variability in drug exposure. 
Moreover, failure to identify drug interactions can thus lead to 
overdosing or under treatment, with severe clinical consequences. 
Given this, polypharmacology has recently been shifted towards the 
multi-target approach. 

 Multi-target drug therapy is the other form of polypharmacol-
ogy. The ability of drugs to act at multiple targets have been known 
to medicinal scientists for decades [35]. The promiscuous drugs can 
interact with multiple targets that additively overcome the robust 
nature of biological networks [7, 24]. Multi-target drugs have 

 

 

 

 

 

 

 

Fig. (1). Polyphamacology serves an integral role in systems approaches to drug discovery. The two forms of polypharmacology are combination therapy and 
multi-target. Network pharmacology provides a global template for novel drug prediction. In networks, nodes represent genes, diseases or small molecules and 
edges connecting these nodes represent the physical interactions such as co-expression or some other shared properties linking the nodes. For example, drug-
target network and protein-protein interaction network decipher the action mechanisms of medicines. Therefore, network approaches facilitate efforts in drug 
discovery and systems pharmacology. And the details of these various network-based systems approaches are outlined in the text. 



Polypharmacology in Drug Discovery Current Pharmaceutical Design, 2016, Vol. 22, No. 00    3 

therapeutic advantages over single-target drugs because they can 
show either additive or synergistic effects. In fact, the majority of 
approved drugs modulate multiple targets to achieve the desired 
treatment [23, 28]. For example, many multi-targeted tyrosine 
kinase inhibitors (TKIs) such as imatinib (1) [36, 37], nilotinib (2) 
[36, 38], and vandetanib (3) [39] are approved for clinical use to 
treat solid tumors in 2010 [37, 38, 40]. (The chemical structure of 
representative drugs are shown in Figure 2.) Psychiatric drugs such 
as clozapine has good efficacy by targeting on several well-defined 
proteins: a number of serotonin (5-HT2A, 5-HT2C, 5-HT6, 5-HT7), 
dopamine (D4), adrenergic ( 1-and 2-subtypes) and other bio-
genic amine receptors [41]. Several non-steroidal anti-inflammatory 
drugs (NSAIDs), such as salicylate (4), metformin (5) or imatinib 
(1) serve as highly effective drugs by affecting many targets simul-
taneously. Furthermore, compounds with favorable multiple targets 
in a rational fashion can have excellent therapeutic efficacy with 
reduced toxicity and resistance. That is because that a drug is un-
likely to bind to a variety of different targets with equally high af-
finity. However, the low-affinity of rug binders is not a disadvan-
tage. For example, multi-target noncompetitive NMDA receptor 
antagonists (agents used to treat Alzheimer’s disease) exert low-
affinity, and multi-target drugs are likely to have a reduced side 
effects than single-target drugs with high affinity [42, 43]. In addi-
tion, the proteins in the signaling and transcriptional networks are 

always interacting with their partners with low affinity [43]. Thus, 
it is suggested that multi-target attacks block an increased number 
of individual interactions (network links) than a single knockout. 
The simulation explains the higher efficiency might be that, multi-
ple attacks can be more efficient than a single attack even if the 
number of affected interactions is the same [44]. Therefore, even 
most multi-target drugs are weak linkers, which might be sufficient 
to achieve a significant modification and desired therapeutic effect.  

 In contrast, multi-target drugs with multiple biological proper-
ties could have inherent advantages over combination therapies, this 
is mainly due to different bioavailability, pharmacokinetics (PKs) 
and metabolisms [9, 30]. Moreover, multi-target drugs offer the 
chance to overcome the intrinsic conflict of combination therapies, 
where effectiveness deriving from hitting the disease network on 
multiple fronts. The successes of multi-target drugs have contrib-
uted significantly to the increasing attractiveness of polypharma-
cology in a single molecule, therefore, in the future, the rational 
design of single-molecule drugs with a desired multi-target profile 
may offer an appealing and cost-effective alternative to drug devel-
opment. On the other hand, the combination therapy of polyphar-
macology also play an important role in the drug design. The suc-
cess stories of both multi-target drugs and combination therapies 
suggest that both approaches are potentially able to promote the 
new drug development or drug combinations with improved safety 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Chemical structures of representative drugs and pharmaceutically relevant compounds discussed in the review. 
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and efficacy profiles. Hence, we proposed that systematic drug-
design strategies should be directed against multiple targets, which 
might promote the development of more-efficient molecules than 
the currently favored single-target drugs.  

3. DRUG REPURPOSING  

 An important implication of polypharmacology is drug repur-
posing, which seeks to discover new clinical application of existing 
drugs used in the treatment of a given pathology [45-47]. The al-
ready approved drugs are more probably to be repurposed for other 
neglected and rare diseases, thus extending the chemical libraries 
other than known drug [48]. The major advantage of drug repurpos-
ing approach is that the pharmacology and toxicity profiles of drugs 
are already well known in the preclinical and Phase I studies. Thus, 
these drugs could be rapidly translated into Phase II and III clinical 
studies and the associated cost could be significantly reduced [49]. 
Furthermore, the medical companies are attracted by drug repurpos-
ing with respect to efficacy (e.g. for the novel indication), and 
sometimes for safety as well (e.g. when doses higher than the ap-
proved ones are needed) [50]. Therefore, the interest in drug repur-
posing seeks to balance both profit and the service drive, which 
could save time and economical cost in the drug discovery process. 
Currently, drugs for repurposing today would involve in a new use 
obtained in and beyond clinical trials. For example, two nonsteroi-
dal anti-inflammatory drugs (NSAIDs), the (R)-enantiomers of 
naproxen (6) and ketorolac (7), have exerted specificity for inhibit-
ing Rho family GTPases, in particular Rac and Cdc42. These two 
drugs are potential candidates as adjuvant therapy to prevent ovar-
ian tumor growth and dissemination during postsurgical recovery 
[51]. Wang et al. analyzed 61 approved drugs targeting on 16 can-
cer genes from the Therapeutic Target Database (TTD), inferring 
11 approved drugs that are not relevant to cancer may be reposi-
tioned as anticancer drugs by combining the medical genetic infor-
mation of the targets [52]. These drugs was listed in Table 1. 
Among them, dienestrol (8) and estradiol (9), two estrogen receptor 
alpha (ESR1) agonists, have been clinically used to treat atrophic 
vaginitis and serve as hormone replacement, respectively. Indeed, 
the breast cancer-inducing property of dienestrol and estradiol were 

recorded in Drugs.com (http: //www.drugs.com/), and the anti-
breast cancer activity of danazol (10) and raloxifene (11) have been 
validated by experiments (Table 1) [53, 54]. In addition, several 
molecules related to drug repurposing are available in Table 2 by 
US National Institutes of Health (NIH) on April 21 2011 with 
pharmaceutical industry leadership. These drugs have been proven 
safe in clinical trials [55-58]. For example, raltegravir (12) is HIV-1 
integrase inhibitor approved by the FDA in 2006, Rob Hromas, MD 
(UNMCC) and clinical scientists at UNM identified it as a potential 
drug for adjuvant therapy in cancer [59, 60]. Phenothiazines used to 
bind to versatile targets and exhibit several desirable therapeutic 
effect. Phenothiazine derivatives have been used as antimalarials 
(late 19th century), antihelminthics (mid-20th century), antihista-
minics (1940s), sedatives, and antipsychotics (1950s). Nowadays, 
scientists suggest that phenothiazines and their derivatives are po-
tential drugs for the treatment of Parkinson’s and Alzheimer’s dis-
eases, and as antibacterial and antifungal compounds [61]. How-
ever, these drugs targeted novel proteins are currently under inves-
tigation to determine the mechanism of action. Besides, how to 
discern the various functions of already approved drugs and target 
profiles is an unsolved problem. 

 Recent developments have opened the door to using drug re-
purposing approaches that rely on both empirical data and computa-
tional models. The inverse genomic signature approach is based on 
the premise that an effective drug targets on a gene expression pro-
file that is inversely correlated to the host signature associated with 
the disease. The approach integrates the complexity of the genome-
wide response of the host to both the disease and the treatment, it is 
rooted in scalar theory [68-70]. Importantly, there has already been 
successful application for several disease indications [71]. On the 
basis of the approach, a public database Connectivity Map (cMap) 
(http: //www.broadinstitute.org/cmap/; version 2) that covers over 
6000 transcriptome profiles established downstream of treatment of 
human cell lines with over 1300 compounds. Then, Lamb et al. 
modified the computational approach, and they used it to compare a 
profile of 164 known drug compounds in cMap to an inflammatory 
bowel disease (IBD) specific gene expression signature derived 
from 176 datasets available in Gene Expression Omnibus (GEO) 

Table 1. Predicted new indications for 11 approved drugs. 

No. Drugs Current drug indication Predicted New indication Refs. 

1 Danazol (10) Endometriosis Breast cancer [62] 

2 Raloxifene (11) 
Osteoporosis in postmenopausal 

women 
Breast cancer [63] 

3 Rosiglitazone (13) Diabetes mellitus Colorectal cancer [64] 

4 Pioglitazone (14) Diabetes mellitus Colorectal cancer [65] 

5 Troglitazone (15) Diabetes mellitus Colorectal cancer [66] 

6 Pentosan polysulfate (16) 
Interstitial cystitis/painful bladder 

syndrome 
Breast cancer [67] 

7 Medroxyprogesterone (17) Hormonal contraceptives Endometrial cancer 
ClinicalTri-

als.gov 

8 Dydrogesterone (18) Menstrual disorders Endometrial cancer n.a. 

9 Norethindrone (19) Oral contraceptive Endometrial cancer n.a. 

10 Norgestimate (20) Hormonal contraceptives Endometrial cancer n.a. 

11 Norgestrel (21) Hormonal contraceptives Endometrial cancer n.a. 

Abbreviation: n.a., not available; Drugs.com (http: //www.drugs.com/); ClinicalTrials.gov (http: //clinicaltrials.gov/). 
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[72, 73]. As a result, two strongest anti-correlated drugs-
prednisolone and topiramate were identified to treat the IBD dis-
ease. In addition, Josset et al. used the host transcriptional response 
to influenza virus to identify potential therapeutics against influenza 
in the cMap database [74]. Finally, eight candidate drugs were iden-
tified and approved for novel indications, six of these drugs inhib-
ited viral growth in in vitro assays. And most importantly, five out 
of the eight also inhibited the growth of the pandemic 2009 H1N1 
influenza virus. In conclusion, these new computational approaches 
have the advantage to greatly reduce both the time and cost for the 
novel drug discovery. 

 Although successful drug repositioning campaigns currently 
become a new approach for the support of drug discovery and de-
velopment, as well as clinical trial, there are two limited conditions 
that deserve attentions, (i) the drug acts at the same single target but 
with different effect that attribute to the physical site of biological 
action; (ii) if the “old” function of the drug and the “new” one may 
hit different biochemical targets, it is extremely unlikely that the 
repurposed drugs have been preoptimized for the new effect [43]. 
These problems lead to the familiar situation, where the repurposed 
drug, even if first-in class to the clinic, that would eventually be 
rendered invalid instead of a subsequent drug that would be even 
better. Therefore, medicinal chemists have sought to incorporate 
new tools and approaches to search for new and better drugs by 
drug repurposing. 

4. NETWORK PHARMACOLOGY 

 Network-based approach has becoming more and more power-
ful tool for drug-target analysis. Various networks help to identify 
the function of novel proteins and thus increases the number of 
potential targets [75, 76]. For the analysis of multi-target drugs that 

affect specific disease models (e.g. anti-hypertensive, anti-psychotic 
and anti-diabetic drugs), specific network models are needed. The 
analysis of drug-target network might decipher the action mecha-
nisms of medicines and discover the most potential “follow-on” 
drugs, with the bridge connection of targets [77]. In addition to 
drug-target network, disease-gene network, protein-protein interac-
tions and multi-pathway networks also can be subjected to a similar 
analysis [78]. In these network models, each node represents a pro-
tein/gene/disease, and each edge corresponds to an interaction be-
tween two elements. The interactions of these nodes represent the 
physical interactions, genetic regulatory interactions and higher 
order relationships such as coexpression or some other shared prop-
erties. In networks, most nodes have only a few interactions, how-
ever, the proteins coexist with a few highly connected nodes, hold 
the whole network together. In this article we review recent ad-
vances in the field of network pharmacology. Empirically model-
ling cellular networks have provided the necessary support for un-
derstanding the functional, logical and dynamical aspects of cellular 
systems. Importantly, we discuss how genes and their products 
interacting with each other form complex networks within cells and 
the possibility that phenotypes result from perturbations of the 
properties of networks. 

4.1. Drug-Target Network  

 Many successful drugs bind to and modulate multiple targets in 
vivo, successfully navigating drug-target network might be fruitful 
to discover new drugs or novel targets for existing drugs. Addition-
ally, identification of conserved interaction patterns of drug-target 
network with distantly related proteins is crucial for target identifi-
cation in polypharmacology [79]. For example, Mestres et al. ana-
lyzed a drug-target network consisting of 4767 unique interactions 
and 802 drugs, leading to a conclusion that a drug interacts with 6 

Table 2. Summary of drug repurposing at UNM. 

No. Drugs Current targets/indication New targets/diseases 

1 Raltegravir (12) 
HIV-1 integrase; antiviral for treatment of HIV-

infected patients 
Metnase; adjuvant therapy in cancer 

2 
Cyclobenzaprine 

(22) 
Not described; skeletal muscle relaxant 

Mono-amine transporters and serotonin receptors; may cause 
serotonin syndrome 

3 Benzbromarone (23) Xanthine oxidase; uricosuric for treatment of gout Quorum sensing signaling pathway; anti-bacteria 

4 
Mometasone Fu-

roate (24) 

Glucocorticoid receptors; for treatment of seasonal 

allergy 
P-glycoprotein; adjuvant therapy in cancer 

5 Astemizole (25) 
Histamine H1 receptors; antihistamine for treatment 

of seasonal allergy 
Inducer of autophagy; as adjuvant therapy in prostate cancer 

6 (R)-Naproxen (26) 
Cyclooxygenases; nonsteroidal anti-inflammatory 

drug for short-term treatment of pain 
RAC and CDC42GTPases; as adjuvant therapy in cancer 

7 Ketorolac (7) 
Cyclooxygenases; nonsteroidal anti-inflammatory 

drug for short-term treatment of pain 
RAC and CDC42GTPases; as adjuvant therapy in cancer 

8 
Tolfenamic acid 

(27) 

Cyclooxygenases; nonsteroidal anti-inflammatory 

drug for short-term treatment of pain 

Inhibitor of hantavirus/DAF binding; antiviral against Sin Nom-

bre virus 

9 Phenothiazines (28) 
Prototype for neuroleptic drugs; antipsychotics for the 

management of schizophrenia 
VLA-4; anti-adhesion inhibitors against inflammation and cancer 

10 
Methylergonovine 

maleate (29) 
Oxytocic; for treatment of postpartum uterine hem-

morhage 
Bcl-2 family proteins; anti-apoptotic as adjuvant therapy in can-

cer 

11 
Beta-adrenergic 

receptor drugs 

Beta-2 adrenergic receptor agonists are used for the 

therapeutic management of asthma 
Noncannonical G-protein coupled receptor ligands 
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targets on average [80]. Yildirim et al. constructed a network of 
FDA approved drugs and drug targets, revealing a rich network of 
polypharmacology interactions [81]. 

 By now, a variety of computational methods have been pro-
posed to analyze and detect new drug-target interactions. For ex-
ample, the Ligand-based approach like QSAR (Quantitative Struc-
ture Activity Relationship) uses machine learning methods to pre-
dict protein-ligand interaction by comparing a new ligand to the 
known ligands of a target protein [82, 83]. QSAR studies are un-
doubtedly of great importance to select the most promising com-
pounds in modern chemistry and biochemistry. However, if the 
number of known ligands for a target protein of interest is insuffi-
cient, this approach couldn’t predict the interactions effectively. In 
addition, target-based approach or docking simulation relies on the 
3D structure of proteins to predict protein ligand interaction and it 
can’t be applied to proteins with unknown 3D structure [84-86]. 
These methods are limited for membrane proteins such as Ion 
channels and G-Protein Coupled Receptors (GPCRs) due to the 
complexity of determining 3D structures of most of these proteins. 
Recently, the importance of chemogenomic approaches in the do-
main of protein ligand interaction prediction has grown fast [87-
89]. These methods integrate both genomic spaces of target proteins 
and chemical space of compounds to predict new drug-target pairs. 
Also, inverse docking, one of the typical structure-based methods, 
is widely used to predict protein targets of small molecules [90-92]. 
Takigawa et al. developed a fast, scalable algorithm to capture sig-
nificant paired patterns of subgraph-subsequence from drug-target 
interactions of approved drugs, dividing drug-target interactions 
into clusters. These exclusive clusters are naturally found by high-
lighting significant substructure pairs in drug-target interactions 
rather than using either drug or target information only, which con-
firm the effectiveness for interpreting polypharmacology in drug-
target network [93]. 

 Another success in predicting drug target interactions has been 
developed by using drug side-effect similarity [27], machine learn-
ing approaches [93, 95, 96], and complex network theory. Violeta 
et al. proposed the Gaussian ensemble screening (GES) “computa-
tional polypharmacology fingerprint” (CPF), the first target finger-
print to encode drug promiscuity information, which can success-
fully describe drug-target relationships and can serve as a novel 
method for proposing new targets for preclinical compounds and 
clinical drug candidates [97]. 

 In a network, if individual targets are redundant, then the drugs 
could interact with multiple targets to exert better therapeutic ef-
fects [7, 98]. Recently, Huang et al. published a comprehensive 
review on multi-target therapies of herbal medicine in depression 
[99]. They reported that some antidepressant drugs bind to more 
than 20 targets, indicating potential synergistic mechanism in herbal 
mixture for treating the disease. Drug targets tend to have more 
interactions than average proteins to a statistically significant de-
gree [98]. Drugs with more proteins tend to be valid clinically and 
are labeled as ‘follow-on’ drugs [100]. Moreover, it is suf cient 
that these multi-target drugs affect their targets with the presumed 
low-af nity interactions to affect the complex equilibrium of whole 
biological networks [99]. Thus, multi-target drugs can increase the 
number of weak links in cellular networks and stabilize these net-
works in addition to having multiple effects. All these information 
mentioned above illustrates the importance of drug-target network 
in the promising polypharmarcology. 

4.2. Disease-Gene Network  

 The target-disease network is a bipartite graph between diseases 
and their therapeutic genes, where nodes represent diseases and 
their therapeutic genes, and the edges represent the interactions of 
diseases and genes. This network is essential to understand the 
similarity and difference in treating different diseases, moreover, it 
helps us to explore the potential therapeutic effects for drug com-

pounds of the known targets. In the previous study, we have built 
the disease-gene networks between the ingredients of various Chi-
nese medicines and their related diseases [102-104]. For example, 
Liu et al. built the disease-gene networks to illustrate the mecha-
nism of licorice as cough reliever, anti-inflammatory, anti-
anabrosis, immunomodulatory, anti-platelet, antiviral (hepatitis) 
and detoxifying agent. Based on these different protein-disease 
networks, novel therapeutic targets such as 5-HT2A (5-hydroxytry-
ptamine 2A receptor) and AKR1B1 (aldose reductase) related to 
diabetic complications and MAOB (monoamine oxidase type B), 
D2 and D3 dopaminergic receptors and MAPK10 (mitogen-
activated protein kinase 10) involved in neurological disease were 
identified in licorice [104]. 

 A disease-gene network linked by known disorder-gene asso-
ciations offers a platform to explore the common genetic origin of 
many diseases. Genes associated with similar disorders show higher 
likelihood of physical interactions and higher expression profiling 
similarity, indicating the existence of disorder-specific functional 
modules. In fact, the majority of nodes have few links while other 
nodes, and the nodes have a much higher degree of linkages called 
hub proteins. Hub proteins have been considered as more essential 
and more abundant, and they show a greater diversity of phenotypes 
in knockouts compared to nonhub proteins [105-109]. Goh et al. 
found that the vast majority of disease genes are nonessential, ex-
hibiting no function to encode hub proteins, and the expression 
pattern of these genes are localized in the functional periphery of 
the network [110]. Indeed, the human disease-gene network reveals 
not only drugs targets on multiple proteins, but also drug targets are 
always involved in multiple disease. To assess the relationships 
between the genes and diseases, the functional human gene net-
works integrating information on genes and the functional relation-
ships between genes were constructed by Franke et al. Their study 
indicated that it is feasible to use gene networks to prioritize 
positional candidate genes in various disorders with multiple asso-
ciated genes [111]. 

4.3. Protein-Protein Interaction Network  

 In recent decades, significant steps have been taken toward the 
generation of comprehensive protein-protein interaction network 
maps. In protein-protein interaction networks, nodes represent pro-
teins and edges represent a physical interaction between two pro-
teins [112]. These networks provide insight into the origins of over-
all cellular behaviors and evolutionary design principles, as well as 
fields of concerning specific cell biological processes or diseases. 
For in lung squamous cancer tissues, the up-regulated genes of 
differentially expressed genes have significantly higher connec-
tivity in the PPI network [113]. Similarly, Jonsson and Bates re-
ported that cancer-related proteins have approximately twice the 
interaction partners than that of proteins unrelated to cancer [114]. 
Another observation is that disease gene are more likely to encode 
hubs in the PPI network than nondisease genes [110]. More impor-
tantly, the interacting pairs are experimentally confirmed in Inter-
acting Proteins Database [115]. Oti et al. used the protein-protein 
network to predict disease genes for genetically heterogeneous 
hereditary diseases [116]. The research was based on the assump-
tion that if disease proteins were located within other loci associ-
ated with that same disease interacted, they were considered as 
candidate disease genes. To conclude, the interaction of protein–
protein interactions can promote the positional candidate disease 
genes. 

4.4. Multi-Pathways  

 To globally reflect the interactions of targets and disease-related 
biological pathways, the target-pathway interaction network is used 
to interpret the relationship of the targets and pathways. Mapping to 
a drug-target network allows us to prioritize new selective com-
pounds, while mapping to other biological networks enable us to 
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observe interesting target pairs and their associated compounds in 
the context of biological systems [117]. Among all the pathway-
networks, the cell signaling pathways are the most important and 
usually woven together, signaling from different sources of stimuli 
would activate the same downstream target, and induce the same 
cell function. For example, Gong et al. presented the cases of alter-
native pathways resulted from the available experimental data, and 
revealed that alternative signal pathways could be involved in the 
regulation of cell functions at the pathway level [118]. In the target-
pathway networks, the targets located in multiple pathways could 
be the key targets for complex disease treatment. In addition, it was 
recently reported that a comprehensive genetic analysis of 24 pan-
creatic cancers, 63 genetic alterations are identified involved in 12 
cellular signaling pathways and processes that were each geneti-
cally altered in 67 to 100% of the tumors [119]. Consequently, tar-
geting the physiologic effects of the altered pathways and processes 
rather than their individual gene components is the promising 
therapeutic development.  

 In addition, network analysis shows that relevant signaling 
pathways are usually safeguarded by well-tuned mechanisms of 
redundancy. This strengthens the view that the weak but simultane-
ous modulation of multiple targets is a more promising strategy for 
triggering a physiological response than the inhibition of a single 
protein [120]. A theoretical algorithm, such as CIPHER, was pro-
posed to identify the pathways and indicate the network-based 
computational framework [121-123]. Especially, the molecular and 
genetic complexity of advanced-stage diseases such as cancer sug-
gests that targeting a single oncogenic pathway may not be suffi-
cient to achieve durable remissions in patients [124]. Accordingly, 
novel drug discovery and development strategies are focusing on 
targeting multiple signaling pathways, either with drug combina-
tions or through the design and development of a single compound 
able to target multiple targets. 

5. RATIONAL DESIGN OF MULTI-TARGET DRUGS  

 The traditional drug discovery process is complex, time con-
suming and expensive, so rationally designing drugs with a desired 
multi-target profile is becoming increasingly important [125]. At 
present, it is a challenging task for the consideration that structure-
activity relationships of molecules acts on different biological tar-
gets. Some scientists found that ligands where polypharmacology 
has been deliberately designed in, by conjugation or overlapping 
pharmacophores, are likely to have lower ligand efficiency than 
general preclinical compounds [7]. In fact, a multi-target drug is 
likely to act on several targets with lower af nity than a single-
target drug, because it is unlikely that a small, drug-like molecule 
will bind to a variety of different targets with equally high af nity. 
However, low-af nity drug binding is apparently not a disadvan-
tage [101]. For example, memantine (30) (a drug used to treat Alz-
heimer’s disease) and other multi-target non-competitive NMDA 
receptor antagonists show that low-af nity, multi-target drugs 
might have a lower prevalence and a reduced range of side-effects 
than high-af nity, single-target drugs [42, 43]. Thus, many multi-
target drugs interact with proteins by low-af nity physical interac-
tions, weak, which might be efficient to treat complex diseases. 

 To identify potential compounds with optimal polypharma-
cological profiles, a lead compound with the desired biological 
activity against multiple targets is needed. Moreover, this lead 
compound needs to be optimized into a clinical candidate that com-
bines the desired polypharmacological profile with a safe, drug-like 
pharmaceutical profile [7]. Usually, ligands designed by conjugat-
ing two distinct pharmacophores are more likely to have high mo-
lecular weight and less likely to have oral drug-like physicochemi-
cal properties. While for some diseases, the absence of interactions 
with non-therapeutic off-targets activities contribute to the overall 
efficacy of a drug [126]. Therefore, it is desirable to assess off-
target activities earlier in the drug discovery process. To solve the 

problem, Milletti and Vulpetti proposed a new method to predict 
the inhibition map of a compound by comparison of binding pock-
ets. They demonstrated that striking structural similarities at the 
subpocket level (root mean square deviation (RMSD) < 0.5 Å) may 
occur among targets with different folds, which can be exploited 
not only to predict off-target effects but also to design novel inhibi-
tors for targets of interest [127].  

 Polypharmacology does not preclude the identification of indi-
vidual targets but focus on the drugs with multiple targets in a dis-
ease network that could be modulated to achieve a beneficial clini-
cal outcome. Nowadays, many experimental projects integrated 
understanding of the interactions among the genome, the proteome, 
the environment and pathophenome, provide useful insights into the 
polypharmacological drugs. For example, Apsel et al. reported that 
the systematic discovery of molecules potently inhibit both tyrosine 
kinases and phosphatidylinositol-3-OH kinases, two protein fami-
lies that are among the most popular cancer drug targets. Finally, a 
promiscuous drug-PP121 blocking the proliferation of tumor cells 
by direct inhibition of both tyrosine kinases and phosphatidylinosi-
tol-3-OH kinases was identified [8].  

 Since experimental testing of molecules on in vitro binding 
assays for thousands of proteins is currently unfeasible, various in 
silico methods have been developed for predicting the pharmacol-
ogical profile of potential drugs [128]. For example, in silico meth-
ods based on ligand similarity have been proven very useful in pre-
dicting novel targets for known drugs [13, 27 47, 129-134]. Vir-
tual screening (pharmacophore-based) and computational docking 
(biostructure-based) methods were performed to discover poly-
pharmacological agents [27]. Docking method is a promising alter-
native to organize binding sites based on their similarities and as-
sume that they will bind to similar ligands, it is enable to guide 
discovery of a drug for a disease, because of modeling enables de-
sign [135, 136]. And, fragment-based approaches have been pro-
posed to design drugs of multiple targets [137]. The advantage of 
the method was leaving room for optimization of hit compounds 
and associated increases in molecular weight, which tended to iden-
tify highly efficient small molecules. Structure-based approaches 
are used to detect and compare binding sites in a computationally 
more efficient manner, which have emerged as promising new tools 
to identify phylogenetically targets to which small molecules may 
show polypharmacology [138, 139]. For example, docking method 
is a promising alternative to guide the drug discovery, which is to 
organize binding sites based on their similarities [135, 136]. Search-
ing compounds with multiple targets vastly decreases the drug re-
sistance and toxicity via lowering effective dose [101, 140], thus 
facilitating discovery of multi-target for complex diseases. The 
advantages of these computational methods are their applicability to 
situations in which mechanistic information is incomplete or frag-
mentary, which will bear the possibility of vastly reducing barriers 
to drug development. Therefore, computational approaches have 
been widely extended to multi-target drug discovery campaigns. 

 Other computational methods were proposed for drug targeting, 
including statistic and machine learning algorithms. For example, 
Dar et al. developed Drosophila model of multiple endocrine neo-
plasia type 2 combined kinase-focused chemistry, kinome-wide 
profiling and Drosophila genetics to uncover a spectrum of targets 
contributing to drug-induced efficacy and toxicity, which providing 
a powerful systems pharmacology approach to develop compounds 
with a maximal therapeutic index [126]. Furthermore, the team 
compared the phenotypic effects of the top hit, resulting in 25% of 
the flies surviving to adulthood, with other library members that 
had a similar potency against RET (rearranged during transfection) 
but a distinct activity profile against other kinases. Based on this, 
they designed a new inhibitor that rescued about 80% of the multi-
ple endocrine neoplasia type 2 (MEN2) flies and was effective to 
treat thyroid cancer resulting from RET mutations that cause 
MEN2. Singh et al. identified cell type-specific kinases that regu-
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late cell migration by elastic net regularization method combined 
with mRNA expression profiling and previously characterized data 
on a large set of kinase inhibitors. Broadly, the approach is also 
generally appropriate for other classes of enzyme inhibitors such as 
deacetylases and methyltransferases, for which informative target 
profiles can be obtained easily. These approaches combine aspects 
of target- and phenotype-based drug discovery, they are thus attrac-
tive options for the rational design of multi-target compounds, es-
pecially for identifying an optimal polypharmacological profile for 
treating complex diseases clinically. The goal of drug optimization 
is to increase activity (ef cacy) and decrease toxicity (speci city), 
thereby improving the therapeutic effect. The computational drug 
discovery techniques are quite robust, every screening paradigm is 
prone to errors, therefore, the combination of multiple screening 
methods is bound to increase the number of false positives signifi-
cantly, which will lead a new era of effective selective drugs [29]. 
The future success of novel drug-design paradigm-polypharma-
cology will depend not only on a new generation of computer mod-
els to identify the potential multiple targets, effective drug candi-
dates but also on more-efficient in vivo testing. 

6. CONLUSION 

 Polypharmacology is emerging as a novel paradigm in drug 
discovery, which can be exploited for designing drugs which can 
effectively target one or more disease states [141]. The FDA ap-
proved drugs with a beneficial therapeutic effect mostly target on 
different target classes and indications, which provides strong sup-
port for the concepts of polypharmacology and multi-target com-
pound design. Many complex diseases do not succumb to single-
target therapies but rather require a multiple modulation of a net-
work of targets [28]. In recent years, the “one disease-one target” 
strategy was not successful in the pharmaceutical industry [142], 
and the network pharmacology have been advocated as the “next 
paradigm in drug discovery” [7], which offers the promise of tack-
ling the two major sources of attrition in drug development: effi-
cacy and toxicity. However, there remain challenges of how to 
rationally design ligands with a desired polypharmacological pro-
file, especially across different target classes. In fact, redundant 
mechanisms can activate multiple pathways, thus impairing the 
drug efficacy achieved by modulating a single protein activity. In 
contrast, the multi-target drugs have the potential of improving 
therapeutic efficacy and safety contribute to the treatment of com-
plex diseases. The superior efficacy of multi-target drugs could also 
be achieved as a result of their preventing unwanted compensatory 
mechanisms, which might result in cellular redundancy. In this 
review, we have highlighted that the features of polypharmacology. 
Also, we have presented some computational methods to predict the 
potential multi-target drugs in a range of applications, from the 
repurposing of existing drugs hit on new protein targets, to design-
ing novel drugs with lower toxicity and higher efficacy. Hence, 
multi-target drug candidates should be designed by optimizing ac-
tivity profiles toward the desired targets while minimizing the risk 
of off-targets. Moreover, network analysis might play important 
role in repositioning drugs that modulate targets involved in differ-
ent pathologies. We conclude by noting that, polypharmacology 
scenario, being able to monitor progress on the binding efficiency 
of ligands across different target classes associated with therapeutic 
relevance will contribute to the success of efficacious drugs. The 
rational polyparmacology design will expand and standard the 
compound profile and provide new insight in the drug development. 
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